Home > VansAirForceForums

-Advertise in here!
- Today's Posts | Insert Pics

Keep VAF Going
Donate methods

Point your
camera app here
to donate fast.

VAF on Twitter:

Go Back   VAF Forums > Model Specific > RV-12/RV-12iS
Register FAQ Members List Calendar Search Today's Posts Mark Forums Read

Thread Tools Search this Thread Display Modes
Old 01-13-2023, 05:45 AM
thiggins thiggins is online now
Join Date: Mar 2020
Location: Saluda,NC
Posts: 189
Thumbs down

They have some assemblers who just donít give a ****.
Not good for anyone.
Donation 2023 paid
ASEL INST COMM Tail-wheeler
RV-12iS builder (Empennage complete, Wings complete!, Fuselage well under way !, finish kit ordered, Garmin avionics ordered, engine ordered, shop out of order )
Got a hangar, and moving in!
Reply With Quote
Old 01-14-2023, 04:47 PM
RayMc RayMc is offline
Join Date: Aug 2021
Location: Roseville, CA
Posts: 17

My avionics bay is assembled, and all wiring is done and ready for the slide-ins and G3X touches... this thread makes me nervous about hitting the avionics power switch when the time comes!

Visions of smoke and that sickening smell of deep-fried avionics!
Reply With Quote
Old 01-14-2023, 05:16 PM
bkc3921's Avatar
bkc3921 bkc3921 is offline
Join Date: Jul 2007
Location: DuBois,Il
Posts: 205
Default Wow....

Originally Posted by Piper J3 View Post
Stein soldered that.....?
Thanks to all for the heads-up. My avionics kit is due this month after a one year wait. Now, you can bet I'll be checking it like a diamond merchant.....

Everything they have done for me in the past has been top-notch, including their customer service. Let's hope this this is a fluke, and not becoming their standard work.
Brian K. Morrow
N433BC "Muttley" RV-7A Flying
N433BM "Dastardly" RV-12is EMP, FUSE, WINGS, Done...FINISH and POWER PLANT in PROGRESS
Official Repeat Offender
"Maintain thy airspeed...Lest the earth arise and smite thee..."
Reply With Quote
Old 01-14-2023, 07:26 PM
FlyingSquirrel's Avatar
FlyingSquirrel FlyingSquirrel is offline
Join Date: Nov 2018
Location: Minnesota
Posts: 10
Default Quality Control Procedures

Hey All,

I want to chime in and say that we take our quality control very seriously. We have been working with the original poster to make sure that his harness is corrected and that he has everything he needs to ensure that his issues are corrected. Beyond that we immediately took a closer look at our QC processes to identify holes in them that allowed this to happen, and took corrective action. The core process that allowed this to happen was a combination of unique circumstances, and a flaw in our QC process - we had been shrinking down the heat shrink prior to our visual inspection. The contact on those posts was sufficient to pass the electrical testing, but obviously was not anywhere near acceptable. This process has now been changed so that every solder joint is inspected before the heat shrink is shrunk down.

As you are aware these harnesses are large and complex, and doing them right is what we specialize in and what we are being paid to do. We have multiple QC check points set up through out the build / test process and are constantly working to improve and evolve these processes.

Here is a window into the major steps in our quality control process.

Step 1: Before the harness is assigned

Before a project is assigned to a technician, all avionics, and Van's supplied parts are inventoried. SteinAir supplied parts are added to the cart. At this time it is verified that all avionics have been received, and the serial numbers are logged into our system. If there are any discrepancies or missing parts, this is addressed before the project is assigned to the technician.

Step 2: Initial technician steps

1. Inventory the avionics, parts, and pieces to confirm all required components are present. We do not re-inventory Van's supplied parts for the builder, just parts we integrate into the harness: i.e. flaps switch, switch plates, power modules, avionics, backup battery, ect. Any missed discrepancies are reported at this time so they can be addressed before the harness is removed from the wiring board.

2. Log on to the Van's cloud to ensure there has not been a revision update. If there has been, the newest drawings are downloaded, and the wiring board is changed out to a new copy.

Step 3: Pre-testing Inspection:

When the harness wiring has been finalized, but before it has been taken off of the wire board I conduct a visual inspection of the harness. I inspect the harness for the following things: Harness cleanliness/aesthetic appearance, Harness length accuracies matched against the board it is on, lacing knot integrity, solder sleeve/joint integrity, crimp integrity on all pins - visual inspection as well as a pull test, visual inspection and pull test of all connectors and contacts-looking for deformed pins or crimps, loose contacts, or any other inaccuracies, pull and test the COAX cable connections. We are now also taking this time to fully inspect all hand soldered joints, then shrinking down the heat shrink. At this time I also make a point of inspecting the fuel pump wires, ensuring A to A and B to B, as well as inspecting the X3 connector contacts and splice and HIC connector Molex with extra attention. This entire review is conducted on the harness board, and by a 3rd party, usually myself, so that it is a fresh pair of eyes on the harness.

Step 4: Configuration:

The harness is then removed from the harness board, and prepared for testing. This includes hooking up all avionics, the antennas, and the power module / HIC modules. We use the Coax cables that are bundled with the harness for testing.

Once the harness is all set up, the last thing we do is hook up the power supply. This is to avoid power accidentally being applied before the harness is completely set up. We then apply power, load the most recent software, and configure the entire EFIS system. We have configuration files that are provided by Vanís but there are a few things we still need to input by hand.

Step 5: Testing Phase

1. Once all of the configurations have been input, we start by verifying that everything is communicating properly. Dynon and Garmin both have system information pages that will allow us to verify that the configurations that have been input are working. In this step we are primarily focused on network configurations: RS-232, ARINC, SV-Net or Can Bus. If these are not all working properly, we will not be able to progress until the system is communicating fully and all LRUs are identified and working properly. Once the system appears to be communicating properly on the status pages we then progress to verifying that each item is working properly.

2. Audio Check: The first thing we will do is to check the com/audio. The screen will be put into normal mode, and we will verify that the COM is being displayed, and that it can be tuned and controlled via the EFIS. We will then hook up a headset and verify that the intercom works, ensuring that two people can communicate back and forth. Once that has been tested, we will move on to a radio test. For this test we will transmit and receive back and forth from a handheld radio to each seat. All 3 push to talks and the both flip-flops are tested at this point. Once all external audio has been tested we put the screen back in configuration mode and use the built in alert audio test functions to test the unswitched audio wires.

3. Transponder: Once the audio has been tested, we move on to the transponder. Like the radio, this is verified that it is controllable via the EFIS screen. We then use our IFR-6000 test box (that we use for transponder checks in the hangar) to do a full transponder check.

4. Autopilot: We confirm that the control head and servos are communicating properly on the EFIS. We then check the A/P disconnect switch by highlighting each servo on the system info page and depressing A/P Disconnect one at a time. This will indicate that the discrete is working.

5. Backup battery: We test the backup battery by turning the power supply off with the backup battery armed. We then ensure that the correct messages are displayed. Once system power is restored we check again with the backup battery disarmed (to make sure it shuts off). We then apply power and check to make sure that the battery voltage displays as it should.

6. Power Module: The first thing we check with the power module is the switch functions on it. For the external lighting switches, we have a small harness to simulate the wings lights with small LEDs. For things like the master switch, we test this by hand with a multimeter. Next we will confirm that the dimmer is working properly across all avionics and switches. We will then check the EFIS screen to ensure that the voltages and current draw are displaying properly.

7. Sticks and Positions: Next we check that the trim motor is running constantly in the same direction with both sticks and that the trim position indicator on the EFIS follows along correctly. We then check the flap motor for operation and for the position indicator on the screen to follow it. We also have a fuel level sender that is hooked up and that we use to check fuel level voltage is being displayed.

8. Final Checkout: From here the technician will come and get me. I will walk through these test procedures again with them and double check that everything has been done and that it is functioning properly. Again I always like to be a second set of eyes on everything because with harnesses these large and complex, it is so easy to get tunnel vision and see what you expect to see, even with a checklist.

Step 5: Pre-shipment inspection.

Once the final check has been done, the technician breaks the system down by removing power and unhooking and storing all components. They then go through the harness and add the plastic backshells, which we leave off during testing to make it easy to check wires. Once this is completed, but before being packed I again come back to inspect the harness. I ensure all backshells and strain relief has been properly installed, and that all connectors are properly labeled. I also inventory all parts that need to be sent with, and again to a visual inspection of the harnesses. From here we box everything up and bring it to the shipping department.

Step 6: Shipping
The final step in our QB process is a final inventory and cross check of all components as they are packed into the box for shipment.

I genuinely want everyone here to know that we clearly have made mistakes we are constantly working to address them, and more importantly make sure that our customers are immediately taken care on, and that we do not make the same mistake again.

We at SteinAir care deeply about what we do, and the people we work with.
Joshua Swenson
Senior Manager,
SteinAir Inc.
Reply With Quote
Old 01-19-2023, 01:10 PM
CTCole CTCole is offline
Join Date: Jan 2022
Location: Duluth, MN
Posts: 6
Default SteinAir QC reply

Thanks for posting this summary of the QC process. Since my whole avionics set is somewhere in your "to do" list, this gives me more confidence that problem sources have been addressed.

--CT Cole
Reply With Quote

Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

All times are GMT -6. The time now is 04:10 PM.

The VAFForums come to you courtesy Delta Romeo, LLC. By viewing and participating in them you agree to build your plane using standardized methods and practices and to fly it safely and in accordance with the laws governing the country you are located in.